ВЛИЯНИЕ УГЛЕРОДНЫХ НАНОТРУБОК НА ЖИЗНЕСПОСОБНОСТЬ СПЛЕНОЦИТОВ И СУБПОПУЛЯЦИОННЫЙ СОСТАВ ЛИМФОЦИТОВ МЫШЕЙ ЛИНИИ BALB/C В ЗАВИСИМОСТИ ОТ ПУТИ ИХ ПРОНИКНОВЕНИЯ В ОРГАНИЗМ

В.В. Фирстова, В.Д. Потапов, В.Н. Герасимов, О.В. Полежаева, Е.В. Зырина

INFLUENCE CARBON NANOTUBES ON SPLENOCYTES VIABILITY AND SUBPOPULATION STRUCTURE OF BALB/C MICE DEPENDES ON THE WAY OF THEIR PENETRATION TO THE ORGANISM

V.V. Firstova., V.D. Potapov, V.N. Gerasimov, O.V. Polezjaeva, E.V. Zyrina

ФГУН «Государственный научный центр прикладной микробиологии и биотехнологии» Роспотребнадзора

В экспериментах мышей обрабатывали углеродными нанотрубками подкожно, аэрозольно и внутривенно. Показано, что наиболее выраженный цитотоксический эффект углеродных нанотрубок проявляется при их аэрозольном поступлении в организм. Независимо от пути проникновения углеродные нанотрубки вызывают изменения субпопуляционного состава спленоцитов, что свидетельствуют об иммунологической перестройке организма.

Ключевые слова: углеродные нанотрубки, субпопуляционный состав спленоцитов, наносоединения.

Carbon nanotubes were injected to BALB/c mice hypodermically, aerosolically and intravenously. It was shown, that aerosol receipt of carbon nanotubes into organism expressed the most cytotoxic effect. Irrespective of a penetration way carbon nanotubes cause changes in splenocytes subpopulation structure, that indicate immunological response of the organism.

Keywords: carbon nanotubes, splenocytes subpopulation structure, nano-connections.

В последнее десятилетие нанотехнологии активно внедряются в жизнь человека. Одним из наиболее часто используемых материалов в области нанотехнологий являются углеродные нанотрубки. Благодаря высокой жесткости и упругости, наряду со способностью к обратимому сгибанию и коллабированию, они нашли широкое применение в промышленности и имеют перспективы использования в медицине. Углеродные нанотрубки принадлежат к семейству фуллереновых аллотропных модификаций углерода и представляют собой цельные цилиндрические структуры, образованные листками графита [1]. Производство и использование углеродных нанотрубок сопряжено с потенциальной опасностью для работающего персонала, выражающейся в увеличении концентрации нанотрубок в воздухе, а также с возможностью синтеза на их основе новых химических соединений, не имеющих аналогов в природе. Вопрос о влиянии углеродных нанотрубок на организмы человека и животных окончательно не решен, хотя интенсивно изучается в ряде лабораторий.

Цель исследования — изучение влияния углеродных нанотрубок (УНТ) на жизнеспособность спленоцитов и субпопуляционный состав лимфоцитов мышей линии BALB/с и зависимость этих изменений от пути поступления УНТ в организм животных.

Методы исследований. Приготовление суспензии углеродных нанотрубок. Углеродные нанотрубки (любезно предоставлены Институтом металлоорганической химии им. Г.А. Разуваева, РАН, Новгород, Россия) суспендировали в 3,7 мг/мл стерильной дистиллированной воды. С помощью ультразвукового дезинтегратора Virtis в режиме охлаждения суспензию в режиме охлаждения обрабатывали 5 циклов, мощность 18, 30 сек. Затем суспензию УНТ (по 1 мл в объеме) отстаивали ночь при температуре 40 °С центрифугировали 2 мин при 6000 об./мин. По результатам взвешивания сухой остаток составил 3,67. Супернатант (0,8 мкг/мл) в объеме 0,2 мл вводили мышам линии BALb/с внутривенно или подкожно. Аэрозольную обработку животных проводили в камере Glas-Col Inhalation Exposure System 099С (Terre Haute, США, модель 4224) в течение 20 мин в динамическом режиме работы камеры при расчетной концентрации наночастиц 8×10⁻⁴ мкг/л воздуха. Через 24 ч после обработки УНТ у мышей отбирали селезенку на исследования.

Электронная микроскопия. Изучение тонкой структуры и морфометрических характеристик УНТ проводили с помощью просвечивающей электронной микроскопии методом негативного контрастирования. Выявление и идентификацию УНТ в спленоцитах осуществляли в просвечивающем электронном «Hitachi» микроскопе методом ультратонких срезов.

МТТ-тест. Цитотоксичность УНТ определяли в тесте МТТ как описано у Т. Mosmann [1983]. Колориметрический тест МТТ основан на способности дегидрогеназ митохондрий восстанавливать желтый МТТ (3-(4,5диметитиазол-2-ил)-2,5-дифенилтетразолий бромид) до синего формазана. Реакция происходит только в живых клетках с активными митохондриальными ферментами. Густота синей окраски коррелирует с жизнеспособностью клеточного монослоя. Определение поверхностных маркеров лимфоцитов. Спленоциты $(5 \times 10^5 \text{ кл/мл})$ каждой группы мышей выделяли и окрашивали моноклональными антителами к поверхностным маркерам CD3 PerCP (BD Biosciences Farmigen), CD4 APC, CD8 PE, CD69 FITC (Caltag, Invitrogen) в течение 20 мин в темноте при 20 °C. Анализ проводился на проточном цитофлюориметре FACSCalibur (Becton Dickinson). Процентное содержание субпопуляций клеток определяли с помощью четырехцветного цитометрического анализа в программе «Cell Quest».

Результаты и обсуждение. Структура примененных в экспериментах УНТ была охарактеризована методом электронной микроскопии. Они представляли собой многостенные трубчатые углеродные формы диаметром 36— 40 нм и длиной 300—600 нм. Водная суспензия изучаемых структур характеризовалась следующим фракционно-дисперсионным составом: нанотрубки диаметром 36 нм составляли 43 %, а 40 нм – 57 %, нанотрубки длиной 300 нм – 75 %, а длиной 600 нм – 25 %. В незначительном количестве (5—10 %) обнаруживались более крупные агрегаты трубчатой формы.

Технически осуществить обработку мышей УНТ с сохранением свойств нанообъектов очень сложно ввиду склонности УНТ образовывать агломераты [2]. Кроме того при аэрозольной обработке экспериментальных животных образовавшиеся агломераты ввиду своих больших размеров могут привести к асфиксии [3]. Чтобы избежать формирования агломератов в процессе приготовления раствора нанотрубок для обработки мышей использовалась специально разработанная методика, подробно описанная в «Материалах и методах».

Суспензии УНТ вводились в организм мышей аэрозольно, подкожно и внутривенно. В соответствии с литературными данными последних лет известно, что УНТ аккумулируются в органах ретикуло-эндотелиальной системы, в том числе в селезенке [4]. С целью определения времени появления УНТ в селезенке мышей проводили электронномикроскопическое обследование данного органа через 1 и 24 ч после обработки животного. Показано, что аэрозольная и внутривенная обработка животных приводила к появлению УНТ в селезенке уже через 1 ч, а после подкожной обработки УНТ обнаруживали в селезенке только через 24 ч. Электронномикроскопически выявлено, что УНТ нахо-

Таблица 1. Процент жизнеспособных спленоцитов мышей линии BALB/C через 24 и 48 ч после обработки животных углеродными нанотрубками аэрозольно, внутривенно или подкожно

Способ введения УНТ	Процентное содержание жизнеспособных спленоцитов после обработки животных УНТ, (%)				
	через 24 ч после обработки	через 48 ч после обработки			
Аэрозольный	$68,53\pm7,55$	$61,04 \pm 8,23$			
Внутривенный	$97,\!67 \pm 1,\!11$	$78,26 \pm 2,32$			
Подкожный	$100,00 \pm 0,21$	$100,00 \pm 1,12$			
Интактные мыши	$100,00 \pm 0,32$	$100,00 \pm 1,32$			

дились в клетках селезенки и в межклеточном пространстве. Некоторые УНТ были окружены капсулоподобным веществом невыясненной природы. Отдельные нанотрубки «пронзали» цитоплазму и ядро спленоцитов насквозь, что вероятно, и являлось причиной обнаруженных при электронной микроскопии некротических изменений клеток.

Для количественной характеристики цитотоксичности УНТ в МТТ-тесте определяли процентное содержание жизнеспособных спленоцитов, выделенных из селезенки обработанных нанотрубками животных. Показано, что через 24 ч после аэрозольной обработки животных в селезенке мышей только ($68,53 \pm 7,55$) % спленоцитов были жизнеспособными (табл. 1). Введение в организм животных нанотрубок другими способами не вызывало цитотоксического эффекта. В предыдущих исследованиях *in vitro* было показано, что растворенные в суфрактанте УНТ характеризовались высокой токсичностью [5], в то время как УНТ, растворенные в сыворотке, активно обволакивались протеинами, образуя капсулоподобное вещество, что способствовало снижению токсичности УНТ. Вероятно, более высокая токсичность УНТ, введенных в организм животных аэрозольно, по сравнению с подкожным или внутривенным способами введения, объясняется составом капсулоподобного вещества, образующегося на поверхности УНТ. В популяциях клеток, выделенных из селезенки мышей, обработанных нанотрубками аэрозольно или внутривенно, наблюдалась спонтанная гибель спленоцитов, нарастающая пропорционально времени их культивирования *in vitro* в течение 48 ч (табл. 1).

Изменение субпопуляционного состава Т-лимфоцитов коррелирует с формированием гранулем и отражает токсичность нанотрубок.

Способ введения УНТ	Субпопуляционный состав спленоцитов, (%)*						
	CD 3+	CD 3+ CD 4+	CD 3+ CD 8+	CD4/ CD8	CD 3+ CD 4+ CD 69+	CD 3+ CD 8+ CD 69+	CD 3+ CD 69+
Аэрозольный	40,66	28,15	12,88	2,19	3,31	1,15	4,46
Подкожный	31,15	23,26	8,51	2,73	3,61	2,46	6,07
Внутривенный	30,28	22,74	8,24	2,76	4,09	3,27	7,38
Интактные животные	35,24	23,27	10,98	2,12	4,47	2,73	7,20
* n = 7							

Таблица 2. Результаты фенотипирования спленоцитов мышей, обработанных углеродными нанотрубками подкожно, внутривенно и аэрозольно

Поэтому ряд исследователей предлагают оценивать токсичность нанотрубок по содержанию CD4 CD8 клеток, т. к. CD4-клетки, являясь корецептором MHC II, а CD8-клетки – корецептором MHC I, запускают формирование специфического ответа к чужеродным антигенам.

Поэтому следующим этапом исследования было изучение состава популяций иммунокомпетентных клеток селезенки. У интактных мышей в селезенке Т-лимфоциты составляли 35,24 % от общего количества клеток, в том числе Т-хелперы 23,27 % и Т-супрессоры 10,98 % (табл. 2). Индекс CD4/CD8 составил 2,12. Содержание Т-лимфоцитов в селезенке у мышей, обработанных нанотрубками подкожно и внутривенно, снижалось по сравнению с таковым у интактных животных и составляло 31,15 % и 30,28 %, соответственно. Процентное содержание активированных Т-лимфоцитов, несущих на своей поверхности рецептор CD 69 достоверно не изменялось. Лимфоцитарный индекс CD4/CD8 увеличивался до 2,7 в обеих группах животных, за счет снижения количества цитотоксических лимофцитов.

В селезенке мышей, обработанных углеродными нанотрубками аэрозольно, отмечалось увеличение количества Т-лимфоцитов (40,66%), в равной степени за счет Т-хелперов и цитотоксических лимфоцитов. Лимфоцитарный индекс у этих животных не изменялся. Наблюдалось снижение количества лимфоцитов, несущих на своей поверхности маркер ранней активации CD69. Увеличением процентного содержания Т-лимфоцитов наряду со снижением активированных лимфоцитов в селезенке мышей после аэрозольной обработки их УНТ, вероятно связано с массовой гибелью других субпопуляций спленоцитов, что было зарегестрировано в МТТ-тесте (табл. 1).

Таким образом, установлено, что УНТ поступая в организм, обволакиваются капсулоподобным веществом. УНТ могут проявлять цитотоксический эффект, выраженность которого зависит от пути поступления УНТ в организм животного. Выраженное снижение жизнеспособности спленоцитов отмечено у животных, обработанных УНТ аэрозольно. Выявленные изменения субпопуляционного состава спленоцитов свидетельствуют об иммунологической перестройке организма. Снижение субпопуляции активированных лимфоцитов, несущих на своей поверхности CD69 рецептор, может быть связано как с активным рекрутингом активированных лимфоцитов в очаг скопления УНТ, так и со слабым иммунным ответом на УНТ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сухно И.В.Углеродные нанотрубки /Сухно И.В., Бузько В.Ю. Краснодар: изд-во КубГУ, 2008. 55 с.
- Maynard A.D., Baron P.A., Foley M., Shvedova A.A., Kisin E.R., Castranova V. Exposure to carbon nanotube material: aerosole release during the handling of the unrefined single walled carbon nanotube material //J Toxicol Environ Health 67: 87–107. 2004.
- Warheit D.B., Laurence B.R., Reed K.L., Roach D.H., Reynolds G.A., Webb T.R. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats //Toxicol Sci 77: 117–125, 2004.
- Deng X.Y., Yang S.T., Nie H.Y., Wang H.F., Liu Yf.A. generally adoptable radiotracing method for tracking carbon nanotubes in animals. Nanotechnology 2008; 19:075101.
- Dong L., Joseph K.L., Witkowski C.M., Craig M.M. Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants. Nanotechnology 2008; 19:255702.

Контактная информация: Фирстова Виктория Валерьевна, тел.: 8-909-968-27-23

Contact information: Firstova Victoria Valer'evna, tel.: 8-909-968-27-23